
15/09/2015

Deploying a PDL based complete web service

Carlo Maria Zwölf et PDL contributors

PDL: a quick overview

• Parameter Description Language (PDL) is intended to be a lingua
franca of parameters:

– Describes params in a sufficient detail to allow workflow tools to check if
parameters can be “piped” between services

● Physical Properties (Nature, Meaning, unit, precision,...)

● Computing (Numerical Type, UCD, SKOS concept)

– Also has capabilities do describe constraints on parameters

● Physical constraints

● Arbitrary (including mathematical) constraints

● Not a description of parameters “values” (cf. UWS).

PDL Uses
Generic software components can be 'configured' by a PDL description for creating quickly fully

interoperable new services

Server exposing
services as web

services

User Interface (for
interaction with PDL

services)

Auto Generation of checking
algorithms from description

Workflow plugin (for
WF interaction with

PDL services)

A priori
computation of
interoperability

graphs

PDL Principles

● The language is based on a Data Model

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

PDL Principles

● PDL became an IVOA recommendation on May 2014 (Madrid
Interop): http://ivoa.net/documents/PDL

● The language is based on a Data Model

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

PDL Principles

Two double values required:
- double Temp
- double Dens

Temp should be
temperature ?
Which unit ?

PDL Principles

Temp should be
temperature ?
Which unit ?

Sending : Temp = -4 ; Dens = -10

PDL Principles

I need two parameters.
The first is called Temp and is a temperature

expressed in Kelvin.
The second is called Dens and is an electronic

density in cm^-3. Temp and Dens are always positive.
Moreover, the product

temp x dens must be in the range
[10 ; 10^4]

PDL Principles

I need two parameters.
The first is called Temp and is a temperature

expressed in Kelvin.
The second is called Dens and is an electronic

density in cm^-3. Temp and Dens are always positive.
Moreover, the product

temp x dens must be in the range
[10 ; 10^4]

OK !
Everything is clear

Sending : Temp = -4 ; Dens = -10

Automatic generated
PDL checker

Automatic generated
PDL checker

Software components based on PDL
Since parameters and constraints are finely described with fine grained granularity:

● Generic software are automatically “configured” by a specific PDL description instance:

– Services containers

– Graphical User Interfaces

– Workflow Plugins

● Checking algorithms and interoperability checker between service are automatically generated
from descriptions

PDL: a quick overview

• Parameter Description Language (PDL) is intended to be a lingua
franca of parameters:

– Describes params in a sufficient detail to allow workflow tools to check if
parameters can be “piped” between services

● Physical Properties (Nature, Meaning, unit, precision,...)

● Computing (Numerical Type, UCD, SKOS concept)

– Also has capabilities do describe constraints on parameters

● Physical constraints

● Arbitrary (including mathematical) constraints

● Not a description of parameters “values” (cf. UWS).

Since parameters and constraints are finely described with fine grained granularity:

● Generic software elements could be automatically “configured” by a specific PDL description
instance:

– Services containers

– Graphical User Interfaces

– Workflow Plugins

● Checking algorithms and interoperability checker between service are automatically generated
from descriptions

PDL CORE
(the grammar)

Automatic Generation of
Checking algorithms

Dynamic 'intelligent'
graphical client

PDL Server
(exposing every code as a UWS service)

Workflow(s) Plugin(s)

Interoperability Checker

calls

interact

uses

Based on

Based on

Software components based on PDL

PDL description editor Generate
descriptions

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

Focus on the PDL server

PDL Server layer
(based on JSP)

UWS like service
Of the specific

code

Configures Becomes

Pattern
File

PDL
Service
Description

Focus on the PDL server

PDL Server layer
(based on JSP)

UWS like service
Of the specific

code

Configures Becomes

Pattern
File

PDL
Service
Description

Generic server routines
Getting param values

from user requests:

Param1 = 10
Param2 = 12.4
Param3 = toto
Param4 = true

● Read the PDL description and

● For each expected parameter, try
to get the parameter provided by
the user

● Verify if the set of the provided
parameters verify all the PDL
constraints

● Ok → the new job is created
● No → PDL errors are notified

to user as a server response

PDL Server layer
(based on JSP)

UWS like service
Of the specific

code

Configures Becomes

Pattern
File

Param1;Param2

Param3
Param4

./myProcessing -o Param1Param2
Tar -zcvf result Param3.tar

./myPostProcessing Param3 Param4

FILE
PATTERN1

FILE
PATTERN2

Generic server routines
Getting param values

from user requests:

Param1 = 10
Param2 = 12.4
Param3 = toto
Param4 = true

10;12.4

toto
true

./myProcessing -o 10 12.4
Tar -zcvf result toto.tar

./myPostProcessing toto true

Processed
FILE1

Processed
FILE 2

PDL
Service
Description

Focus on the PDL server

Focus on the PDL server

PDL server main features:

● It supports user authentication (a user cannot see the jobs or jobs lists of other users).

● It supports Grids of models
● Jobs for parametric studies may be grouped into arbitrary sets of runs (GridID for each grid).

Focus on the PDL server

PDL server main features:

● It supports user authentication (a user cannot see the jobs or jobs lists of other users).

● It supports Grids of models
● Jobs for parametric studies may be grouped into arbitrary sets of runs (GridID for each grid).

● It has three interfaces for job administration:
● Two machine oriented

● The first “speaking XML” (e.g. used by Taverna plugin)
● The second “speaking Json” (for alternate clients e.g. PDR-code client).

● One human readable
● The old one (based on java servlet) has been redesigned using Google Web Toolkit

● Three static web pages have been replaced by a unique dynamic page.

● Designed to be straightforwardly deployed on local server, clusters,grid and cloud
architectures

Focus on the PDL server

{
 "ExpectedResultsURLs": [
 "http://tepig.obspm.fr:8081/pdrlight//output/PDRlight.zip"
],
 "UserMail": "test-pdr@obspm.fr",
 "JobID": 8,
 "ManagementURL": "http://tepig.obspm.fr:8081/pdrJobManager/userId=27&mail=test-pdr@obspm.fr",
 "UserID": 27,
 "ServiceId": "http://tepig.obspm.fr:8081/pdrlight/"
}

{
 "errors": [
 {
 "errorMessage": "the following condition is not verified in the Grains Properties group: Grains max radius

belongs to range 1e-6 - 1e-4",
 "involvedParameter(s)": [
 "los_ext",
 "rrr",
 "metal",
 "cdunit",
 "gratio",
 "q_pah",
 "alpgr",
 "rgrmin",
 "rgrmax",
 "F_DUST_P"
]
 }
]
}

PDL Server: a distributed
architecture

Remote filesystem
mounting

JDBC

1) Processed
File from pattern

Is put here

Web Frontal
Serving both human and

other SI requests

Data Base
(holding user data and

configurations)

Input
File
Hub

Output
File
Hub

Worker node Worker node Worker node

2) Every node
retrieves the work

he can do and
start processing

3) The worker node store
the computed results on

the Output Hub

4) The frontal check if
new results are available
and notifies it to the user

who asked the job

 'human client' and/or

Workflow plugin

0) Job request
sent to server

5') results are
Notified by
Mail to user

5'') WF plugin asks for results
(long polling system)

Practical work

We are going through the following steps

● Configuration of the generic client using an instance of description

● Configuration if the server
● Internal Database
● Edition of pattern files

● Running the service

It is easy and quick to deploy from scratch a full working PDL service (client and
server), even for non computer-science expert.

Practical work

We are going through the following steps

● Configuration of the generic client using an instance of description

● Configuration if the server
● Internal Database
● Edition of pattern files

● Running the service

It is easy and quick to deploy from scratch a full working PDL service (client and
server), even for non computer-science expert.

The example service has the following features:

● Takes 4 parameters
● Temperature (Real, K), Density (Real, cm-3), InitialLevel (Number Integer), FinalLevel (Number

Integer)
● Constrain InitialLevel < FinalLevel

● For the computation
● The value of Temperature must be contained into a file having the .temp extension
● The value of Density must be contained into a file having the .dens extension
● The value of the two levels must be contained into a file having .levels extension
● A file .sh is used for driving the computation server-side

● Have your own PDL service working now! Follow the 15 steps of the HowTo contained into the zip file at
the url: http://pdl.obspm.fr/download/TutorialPDL2015.zip

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

