
Observatoire de PARIS

 OV France Workflow Day

PDL and its framework:

Concepts, Client, Server,...

Carlo Maria Zwölf

PDL: Why and What is it?

Scientific real use case : Service for broadening computations

PDL: Why and What is it?

Scientific real use case : Service for broadening computations

• Existing solutions (Wadl, WSDL) for describing services does not fit the scientific
needs:

● There is no description of algorithms, physics and utility behind a given service (one has to know
a priori the service for using it)

● There is no description about the physical meaning of parameters and units

● Descriptions are only in a computer science sense.

● Interoperability is understood only in a basic computer science way.

Motivations
● PDL aim is to answer to two major issues in scientific services

Description needs

Describe physical properties of parameters

Nature Meaning Unit Precision Range

Describe complex relations involving parameters

Physical
constraints

Arbitrary
Conditions

Mathematical
Conditions

Interoperability needs

Interaction of two services has sense if the parameter
sent by the first and expected by the second have same

Computer type Physical concept Unit

Interaction of two services has sense if all preconditions
of second service are satisfied by output of first one

Motivations
● PDL aim is to answer to two major issues in scientific services

Description needs

Describe physical properties of parameters

Nature Meaning Unit Precision Range

Describe complex relations involving parameters

Physical
constraints

Arbitrary
Conditions

Mathematical
Conditions

Interoperability needs

Interaction of two services has sense if the parameter
sent by the first and expected by the second have same

Computer type Physical concept Unit

Interaction of two services has sense if all preconditions
of second service are satisfied by output of first one

Existing solutions (WADL & WSDL) don't
fit this fine scientific need

Existing workflow engines (Babel, Taverna,
OSGI, OPalm, GumTree) implements
interoperability only in a “basic” computer way

Motivations
● PDL aim is to answer to two major issues in scientific services

Description needs

Describe physical properties of parameters

Nature Meaning Unit Precision Range

Describe complex relations involving parameters

Physical
constraints

Arbitrary
Conditions

Mathematical
Conditions

Interoperability needs

Interaction of two services has sense if the parameter
sent by the first and expected by the second have same

Computer type Physical concept Unit

Interaction of two services has sense if all preconditions
of second service are satisfied by output of first one

PDL is a rigorous grammar for
● Finely describing the set of parameters (inputs &

outputs) in a way that
● Can be understood easily by humans
● Can be interpreted and handled by a computer

● Describe complex relations and constraints on and
between parameters

PDL description capabilities
meet:

● The “scientific” description
needs

● The “scientific” workflow
needs

PDL Principles

● All the rules and specifications are detailed into the Working Draft

 Get the PDL working draft → pdl.obspm.fr

● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

PDL Principles

● All the rules and specifications are detailed into the Working Draft

 Get the PDL working draft → pdl.obspm.fr

● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

Examples of description capabilities

PDL Principles

● All the rules and specifications are detailed into the Working Draft

 Get the PDL working draft → pdl.obspm.fr

● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

Examples of description capabilities

PDL Principles
● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

Two double values required:
- double Temp
- double Dens

Temp should be
temperature ?
Which unit ?

PDL Principles
● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

Temp should be
temperature ?
Which unit ?

Sending : Temp = -4 ; Dens = -10

PDL Principles
● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

. I need two parameters.
The first is called Temp and is a temperature

expressed in Kelvin.
The second is called Dens and is an electronic

density in cm^-3. Temp and Dens are always positive.
Moreover, the product

temp x dens must be in the range
[10 ; 10^4]

PDL Principles
● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:

● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

. I need two parameters.
The first is called Temp and is a temperature

expressed in Kelvin.
The second is called Dens and is an electronic

density in cm^-3. Temp and Dens are always positive.
Moreover, the product

temp x dens must be in the range
[10 ; 10^4]

OK !
Everything is clear

Sending : Temp = -4 ; Dens = -10

PDL checker PDL checker

PDL and interoperability

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

PDL and interoperability

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

PDL and interoperability

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

PDL and interoperability

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 3 :
Inputs c reals

Always c > 0
Outputs d real and

d=sqrt(c)
Always d > 0

PDL and interoperability

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 3 :
Inputs c reals

Always c > 0
Outputs d real and

d=sqrt(c)
Always d > 0

PDL and interoperability

The equality is in the sense that parameters have same

UCDs

UTypes

SkossConcepts

Units

PDL main corollaries
Since parameters and constraints are finely described with fine grained
granularit,y many possibilities are open:

● Generic elements could be automatically generated

● These generic elements are “configured” by a specific PDL description
instance

PDL main corollaries
Since parameters and constraints are finely described with fine grained
granularity, many possibilities are open:

● Generic elements could be automatically generated

● These generic elements are “configured” by a specific PDL description
instance

PDL CORE
(the grammar)

Automatic Generation of
Checking algorithms

Dynamic 'intelligent' client

PDL Server
(exposing every code as a UWS service)

Taverna Plugin

Interoperability Checker

PDL main corollaries
Since parameters and constraints are finely described with fine grained
granularity, many possibilities are open:

● Generic elements could be automatically generated

● These generic elements are “configured” by a specific PDL description
instance

PDL CORE
(the grammar)

Automatic Generation of
Checking algorithms

Dynamic 'intelligent' client

PDL Server
(exposing every code as a UWS service)

Taverna Plugin

Interoperability Checker

calls

interact

uses

Based on

Based on

PDL main corollaries
Since parameters and constraints are finely described with fine grained
granularity, many possibilities are open:

● Generic elements could be automatically generated

● These generic elements are “configured” by a specific PDL description
instance

PDL CORE
(the grammar)

Automatic Generation of
Checking algorithms

Dynamic 'intelligent' client

PDL Server
(exposing every code as a UWS service)

Taverna Plugin

Interoperability Checker

?? HTML 5 Widget ??

calls

interact

uses

Based on

Based on

The Dynamic client

Generic client
code base

Specific
Client

Configures Becomes

The Dynamic client

Generic client
code base

Specific
Client

Configures Becomes

The Dynamic client

Generic client
code base

Specific
Client

Configures Becomes

The Dynamic client

Generic client
code base

Specific
Client

Configures Becomes

The PDL Server : deploy a UWS
compliant service in few clickes

PDL Server layer
(based on JSP)

UWS service
Of the specific

code

Configures Becomes

Pattern
File

The PDL Server : deploy a UWS
compliant service in few clickes

PDL Server layer
(based on JSP)

UWS service
Of the specific

code

Configures Becomes

Pattern
File

Param1;Param2

Param3
Param4

./myProcessing -o Param1Param2
Tar -zcvf result Param3.tar

./myPostProcessing Param3 Param4

FILE
PATTERN1

FILE
PATTERN2

Generic server routines
Getting param values

from user requests:

Param1 = 10
Param2 = 12.4
Param3 = toto
Param4 = true

10;12.4

toto
true

./myProcessing -o 10 12.4
Tar -zcvf result toto.tar

./myPostProcessing toto true

Processed
FILE1

Processed
FILE 2

PDL Server: a distributed
architecture

Web Frontal
Serving both human and

other SI requests

Data Base
(holding user data and

configurations)

Input
File
Hub

Output
File
Hub

Worker node

SshFS or NFS

Worker node Worker node

PDL Server: a distributed
architecture

SshFS or NFS

JDBC
Web Frontal

Serving both human and
other SI requests

Data Base
(holding user data and

configurations)

Input
File
Hub

Output
File
Hub

Worker node Worker node Worker node

1) Processed
File from pattern

Is put here

PDL Server: a distributed
architecture

SshFS or NFS

JDBC

1) Processed
File from pattern

Is put here

Web Frontal
Serving both human and

other SI requests

Data Base
(holding user data and

configurations)

Input
File
Hub

Output
File
Hub

Worker node Worker node Worker node

2) Every node
retrieves the work

he can do and
start processing

3) The worker node store
the computed results on

the Output Hub

PDL Server: a distributed
architecture

SshFS or NFS

JDBC

1) Processed
File from pattern

Is put here

Web Frontal
Serving both human and

other SI requests

Data Base
(holding user data and

configurations)

Input
File
Hub

Output
File
Hub

Worker node Worker node Worker node

2) Every node
retrieves the work

he can do and
start processing

PDL Server: a distributed
architecture

SshFS or NFS

JDBC

1) Processed
File from pattern

Is put here

Web Frontal
Serving both human and

other SI requests

Data Base
(holding user data and

configurations)

Input
File
Hub

Output
File
Hub

Worker node Worker node Worker node

2) Every node
retrieves the work

he can do and
start processing

3) The worker node store
the computed results on

the Output Hub

PDL Server: a distributed
architecture

SshFS or NFS

JDBC

1) Processed
File from pattern

Is put here

Web Frontal
Serving both human and

other SI requests

Data Base
(holding user data and

configurations)

Input
File
Hub

Output
File
Hub

Worker node Worker node Worker node

2) Every node
retrieves the work

he can do and
start processing

3) The worker node store
the computed results on

the Output Hub

4) The frontal check if
new results are available
and notifies it to the user

who asked the job

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

