

Medical image workflows enactment on the Grid with MOTEUR

IAP, January 14, 2008

Johan Montagnat CNRS, I3S laboratory

http://www.i3s.unice.fr/~johan

www.eu-egee.org

Université

French National Center for Scientific Research

30 000 staff (11 000 researchers) Covers all scientific areas

University of Nice Sophia-Antipolis 2 100 staff (1 400 teachers) 26 000 students

Nice SOPHIA ANTIPOLIS

computer science

The DALIS 7 faculty members Grid computing and medical imaging

Modalis team

Sophia Antipolis (Nice)

Why grids for life sciences?

3

Sharing computing resources and algorithms

Enabling Grids for E-sciencE

- Research (populations studies, models design, validation, statistics)
- Complex analysis (compute intensive image processing, time constraints...)

NeuroLOG project (2007-2010) http://neurolog.polytech.unice.fr

French national agency for

NeuroLOG ANR-06-TLOG-024

http://neurolog.polytech.unice.fr

Neu<u>rolog</u>

Use case: multiple sclerosis

Neurolog

Use case: Multiple Sclerosis

Software technologies for integration of process, data and knowledge in medical imaging

 Brain atrophy correlation with clinical score (EDSS)

Statistical correlations between Normal Controls (NC), Relapsing-Remitting patients (RR) and Secondary Progressive patients (SP).

NeuroLOG ANR-06-TLOG-024

Neurolog

Experiments requirements

Software technologies for integration of process, data and knowledge in medical imaging

Large databases

- 256 3D images (test database)
- 120 3D images (mono-site clinical database)
- 2 400 3D images (multi-site clinical trial, TBs of data)

Various computing tools

– 10 to 15 processing stages in the pipeline

Computing power

- > 2 months sequential execution time
- Pipeline description and execution
 - Workflow description
 - Workflow manager (execution monitoring, restart on error...)

Workflow management

Grid Workflow Efficient Enactment for Data Intensive Applications

Compound applications reusing existing codes

GWENDIA ANR-06-MDCA-009

Medical image workflows with MOTEUR, J. Montagnat, IAP, Jan. 14, 2008 8

Workflow manager: for what?

Grid Workflow Efficient Enactment for Data Intensive Applications

- Science
 - Abstract representation simplifying the expression of complex procedures

Performance

- Transparent code parallelization
- Transparent interface to compute infrastructure

Accessibility

- Graphical interface
- SOA
 - Flexible and dynamic business process composition
 - Adaptation, non-functional properties addition

Workflow: for what?

GWENDIA

users

point of view

Grid Workflow Efficient Enactment for Data Intensive Applications

- Science
 - Abstract representation simplifying the expression of complex procedures
- Performance
 - Transparent code parallelization
 - Transparent interface to compute infrastructure
- Accessibility
 - Graphical interface
- SOA
 - Flexible and dynamic business process composition
 - Adaptation, non-functional properties addition

Grid enactment

Grid Workflow Efficient Enactment for Data Intensive Applications

- Enacting services on a batch-oriented grid infrastructure
 - Submission web service
- From workflow manager to grid execution
 - Execution engine independent from grid middleware
 - Intefaced to different grid middlewares (gLite/LCG2, DIET, OAR...)

Data intensive medical imaging

Grid Workflow Efficient Enactment for Data Intensive Applications

Application community

- Compute and data intensive applications
- Non-expert end users
- Distributed (medical centers)

Coarse grain parallelism

Grid computing

Platform independence

- Common representation / submission interface to
 - Different grids
 - Multiple grids

Data manipulation

- Access to grid data sets
- Complex data protection requirements
- Massive data parallelism

Data flows

- Successive image processing filters
- Data intensive and data driven
- Traditionally, sequential / mono-processor computing

Scufl data flow language

- Intuitive for the image processing community
- Implicit parallelism description (non specialized end-users)
- Independent description of processings and data sets
- Rich iteration semantics

Data flows vs DAGs

Grid Workflow Efficient Enactment for Data Intensive Applications

Dynamic generation of computation DAG

DAGs limitation

- Known number of data fragments (no dynamic data sets)
- No conditionals
- Bounded loops (unfoldable)

Turn-around

 Last minute DAG generation: conditionals and unbounded loops become synchronization points.

Efficient parallel execution

Grid Workflow Efficient Enactment for Data Intensive Applications

- A workflow naturally provides application parallelization
- MOTEUR transparently exploits 3 kinds of parallelism

- Workflow parallelism = implicit graph parallelism
- Massive data parallelism in grid applications
- Service parallelism = pipelining

Grid Workflow Efficient Enactment for Data Intensive Applications Experiments

Implemented through services composition

- Dynamic workflow analysis
- Services factory

- 3 rules to group without breaking parallelism
- Recursive application of the grouping rules

Grid Workflow Efficient Enactment for Data Intensive Applications

- On the EGEE infrastructure (biomed VO)
- Impact of the parallelisms:

MOTEUR worfklow manager

Grid Workflow Efficient Enactment for Data Intensive Applications

Open source workflow enactor

- Code + docs + tutorial: http://egee1.unice.fr/MOTEUR
- Developed at the I3S CNRS laboratory
- With the support of French national research agency
 - GWENDIA project
 - http://gwendia.polytech.unice.fr
 - http://egee1.unice.fr/MOTEUR

Targets

- Ease of use, flexibility, service-oriented approach
- Performance, transparent exploitation of application parallelism

Supports

- Scufl language (from myGrid/Taverna)
- Service based invocation (WS)
- Grid middlewares (EGEE / Grid'5000)

CUPOLO Application to rigid registration algorithms evaluation Software technologies for integration of process, data and knowledge in medical imaging

Unregistered

Registered

Medical image workflows with MOTEUR, J. Montagnat, IAP, Jan. 14, 2008

Neurolog

Bronze standard estimation

Redundancy

Software technologies for integration of process, data and knowledge in medical imaging

- N images, m algorithms
- N.(N-1).m transformations measured
- N-1 transformations to estimate

 T_{13} T_{12} T_{23} T_{23} T_{21} T_{21} T_{32} T_{32}

- Exploit redundancy to compute
 - Mean transformations T_{μ} (Bronze standard)
 - Variances on the transformations (Accuracy)

Neurolog

Bronze standard workflow

NeuroLOG ANR-06-TLOG-024

Medical image workflows with MOTEUR, J. Montagnat, IAP, Jan. 14, 2008

Data composition

Grid Workflow Efficient Enactment for Data Intensive Applications

Data flows expressiveness

Grid Workflow Efficient Enactment for Data Intensive Applications

Graph of services (+ data)

DAG of tasks

Data flows expressiveness

Grid Workflow Efficient Enactment for Data Intensive Applications

Graph of services (+ data)

DAG of tasks

Data flows expressiveness

Grid Workflow Efficient Enactment for Data Intensive Applications

Graph of services (+ data)

DAG of tasks

Neurolog

Image database

Software technologies for integration of process, data and knowledge in medical imaging

- 29 patients
- 2 time points minimum
- Gadolinium injected T1 MRIs
- Example for one patient (3 time points):

NeuroLOG ANR-06-TLOG-024

Mean error on the transformations:

 $\sigma_{r}=0.130 \ deg$; $\sigma_{\tau}=0.345 \ mm$

• Error on the bronze standard:

 $\sigma_r=0.05 \ deg$; $\sigma_{\tau}=0.148 \ mm$

Accuracy of the algorithms:

Algorithm	$\sigma_{ m r}(deg)$	$\sigma_{ m t}(mm)$
CrestMatch	0.150	0.424
PFRegister	0.180	0.416
Baladin	0.139	0.395
Yasmina	0.137	0.445

Drug discovery

Grid Workflow Efficient Enactment for Data Intensive Applications

Molecular docking simulation

- Millions of ligands docked against few proteins from viruses genomes
- Identify (score) most promising ligands
- Validate in-vivo

DD application

Grid Workflow Efficient Enactment for Data Intensive Applications

GWENDIA ANR-06-MDCA-009 Medical image workflows with MOTEUR, J. Montagnat, IAP, Jan. 14, 2008

DD applicaiton (pull mode)

Grid Workflow Efficient Enactment for Data Intensive Applications

GWENDIA ANR-06-MDCA-009 Medical image workflows with MOTEUR, J. Montagnat, IAP, Jan. 14, 2008

Scufl prototype

Grid Workflow Efficient Enactment for Data Intensive Applications

CAVIAR: Cardiovascular sequences analysis

Enabling Grids for E-sciencE

3D+time heart segmentation

3D+time motion estimation & tracking

- Non linear elastic deformable model
- Spatio-temporal process (sequence)
- Image registration based approach

State space modelling & temporal filtering

EGEE-II INFSO-RI-031688

CAVIAR computations

Huge amount of medical data
 0.5 GB / patient / examination

- Compute intensive image analysis
 - Processing of 3D image sequences:
 - 2 min CPU per 3D volume
 - 20 hours CPU for 160³ motion estimation
- Quantitative imaging Workflow
- Grid aided Cardio-Vascular Diseases diagnosis and treatment
 - Remote access to High Computing Power
 - Remote access to distant databases with a secured access
- Target: Large distributed studies on CVD patients

Cardiovascular analysis

Grid Workflow Efficient Enactment for Data Intensive Applications

items: it will fire 6 times

R, J. Montagnat, IAF, Jan. 14, 2000

Data splitting / merging operators

Grid Workflow Efficient Enactment for Data Intensive Applications

Application-level solution

- Lists are represented by:
 - Java Arrays (Beanshells)
 - XML lists (Web services)

Control structures

Grid Workflow Efficient Enactment for Data Intensive Applications

Loops and conditionals

- Using a special "empty data set" void result
- Conditional seen as a filter

Generic Application Service Wrapper

Grid Workflow Efficient Enactment for Data Intensive Applications

- Provide service wrapper to non instrumented code
- Handle data transfers (references to grid data)

Legacy code descriptor

Grid Workflow Efficient Enactment for Data Intensive Applications

Executable access method

- URL
- Grid file

Input/Output

- Command-line options
- Access methods (for files)

Sandbox files access methods

Dynamic wrapping

Grid Workflow Efficient Enactment for Data Intensive Applications

Generic Application Service Wrapper

- Provide service wrapper to non instrumented code
- Handle data transfer (references to grid data)
- Execution scheme:

Dynamic wrapping

Grid Workflow Efficient Enactment for Data Intensive Applications

Generic Application Service Wrapper

- Provide service wrapper to non instrumented code
- Handle data transfer (references to grid data)
- Execution scheme:

Dynamic wrapping

Grid Workflow Efficient Enactment for Data Intensive Applications

Generic Application Service Wrapper

- Provide service wrapper to non instrumented code
- Handle data transfer (references to grid data)
- Execution scheme:

Enabling Grids for E-sciencE

- Workflow managers interface to grids
 - Intermediate layer to "shield" the user
- Flexible languages enable complex procedure description
- Data flows are well adapted to represent image analysis pipelines
- MOTEUR features
 - Interfaced to EGEE and Grid'5000
 - Handles parallelism transparently
 - High level abstraction data flow language
 - Research tool, no workflow editing (coming shortly)
 - http://egee1.unice.fr/MOTEUR
- Alternatives:
 - Taverna2 (beta): we developed an experimental gLite plugin
 - P-GRADE portal, DAG-based

