
Millennium database Using a relational database for analysing simulations and SAM results

With contributions from

- JHU : Alex Szalay
- MPA:
 - -Jeremy Blaizot,
 - -Ben Panter
 - –Guo Qi
 - -Volker Springel
 - -Simon White
 - -Vivienne Wild

Agenda

- Millennium simulation products
- Motivation for RDB approach
- Merger trees in RDB
- GAVO online query tool demos
- Plans
- Synthetic spectra: query-by-example using PCA

Millennium simulation

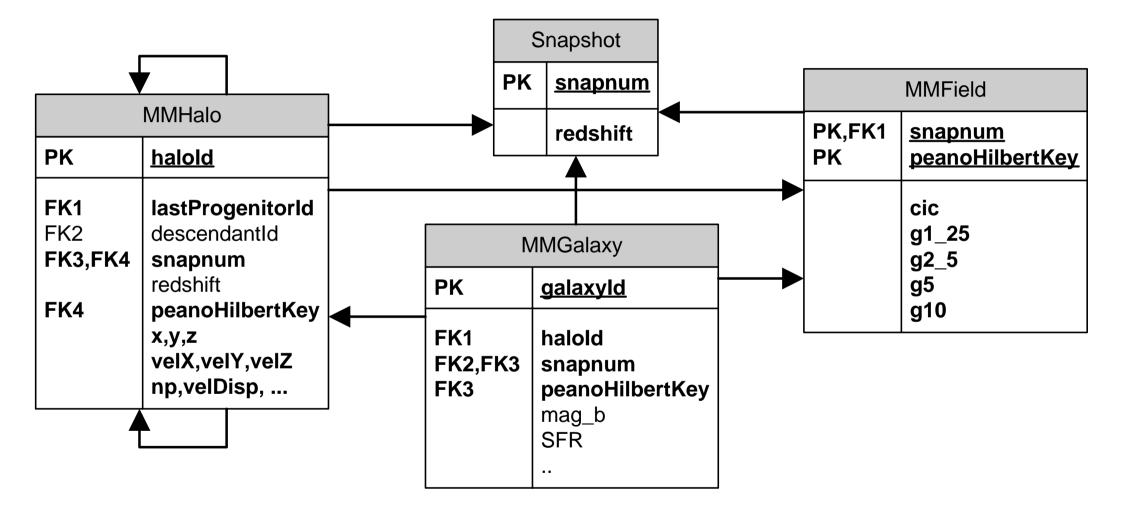
- 10 billion dark matter particles
- 500 Mpc box
- 1yr WMAP parameters
- 300000 CPU hours
- 25Tb stored output (63 snapshots)
- Density field binned in 256^3 grid cells
- 75000000 (sub)halos
- 20 Million halo merger trees
- SAM galaxy models: 1 billion galaxies

Science questions:

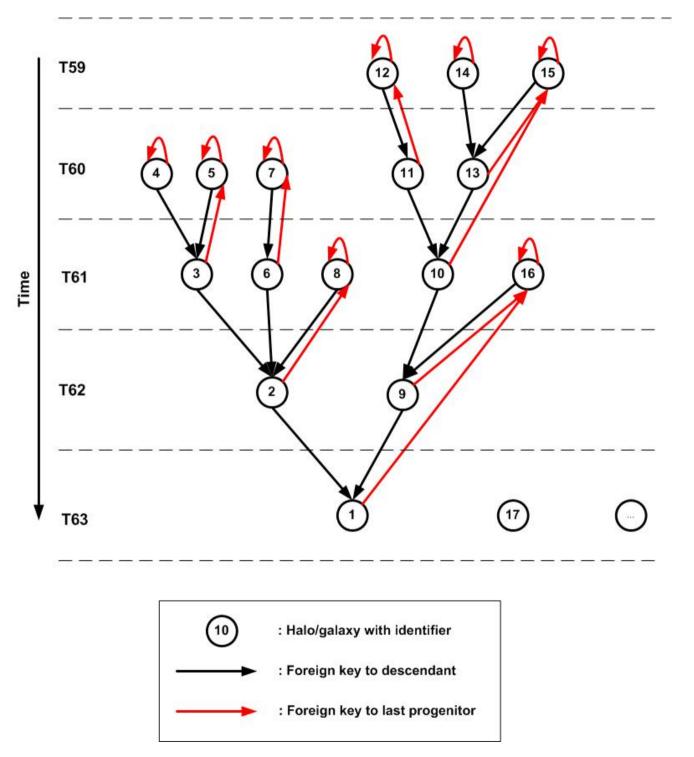
1.Return the galaxies residing in halos of mass between 10^13 and 10^14 solar masses.

- 2.Return the galaxy content at z=3 of the progenitors of a halo identified at z=0
- 3.Return all the galaxies within a sphere of radius 3Mpc around a particular halo
- 4.Return the complete halo merger tree for a halo identified at z=0
- 5. Find positions and velocities for all galaxies at redshift zero with B-luminosity, colour and bulge-to-disk ratio within given intervals.
- 6.Find properties of all galaxies in haloes of mass 10**14 at redshift 1 which have had a major merger (mass-ratio < 4:1) since redshift 1.5.
- 7.Find all the z=3 progenitors of z=0 red ellipticals (i.e. B-V>0.8 B/T > 0.5)
- 8.Find the descendents at z=1 of all LBG's (i.e. galaxies with SFR>10 Msun/yr) at z=3 9.Make a list of all haloes at z=3 which contain a galaxy of mass >10**9 Msun which is a progenitor of BCG's in z=0 cluster of mass >10**14.5
- 10.Find all z=3 galaxies which have NO z=0 descendant.
- **11.Return the complete galaxy merging history for a given z=0 galaxy.**
- 12.Find all the z=2 galaxies which were within 1Mpc of a LBG (i.e. SFR>10Msun/yr) at some previous redshift.
- 13.Find the multiplicity function of halos depending on their environment (overdensity of density field smoothed on certain scale)
- 14. Find the dependency of halo formation times on environment ("Gao-effect")

Why use RDBM?


- encapsulation of data in terms of logical structure, no need to know about internals of data storage
- standard query language for finding information
- advanced query optimizers (indexes, clustering)
- transparent internal parallelization
- transactionally safe remote access to multiple users at same time
- security mechanisms
- standardized, transactional support for inserts/updates/deletes
- maintenance (backup, mirroring, etc)
- forces one to think carefully about data structure
- speeds up path from science question to answer
- facilitates communication

RDBM stores data in Tables


- Column: name, simple datatype
- Row: an instance of a relation
- Value: a cell in a row
- Primary key: unique identifier for rows, built up from >=1 columns

] [<u>F</u> ile <u>E</u> di		vorites	<u>T</u> ools <u>H</u>	lelp					
-	🖨 Back Idress 🙍		ws2.xrav				-	3 B-:		<u>∎</u> ∂⊙
-	Address http://gavows2.xray.mpe.mpg.de:8080/mpasims/QueryManager Links web Project Requirements inline Millennium Simulation Projects Page 2 Coogle - Coogle - Coogle - Search - Sulf 2767 blocked Ø									
] (
	haloid	redshift	np	×	У	z	velx	vely	velz	
ľ	0	0	51984	6.57579	13.086	25.3381	-81.9482	-35.0246	204.148	
	1	0.0199325	51288	6.58791	13.0991	25.3011	-80.8571	-36.8201	208.687	
	2	0.0414031	5105 <mark>2</mark>	6.59718	13.1118	25.253	-78.1043	-37.1348	211.922	
	3	0.0644934	51169	0.01591	13.121	25.2049	-78.3319	37,1916	217.684	
K	4	0.0892878	5087 <mark>0</mark>	6.62765	13.1304	25.1529	-73.3694	-37.7079	222.467	
	5	0.115883	50488	6.6414	13.14	25.0953	-73.0865	-33.7872	223.384	
Ν	6	0.144383	5016 <mark>8</mark>	6.6587	13.1495	25.0317	-72.8201	-31.2898	226.987	
	T	0.174898	50485	6.64224	13.1701	24.9276	-71.1837	-29.4758	230.704	
	8	0.207549	49888	6.64248	13.1837	24.8333	-72.0835	-25.5926	231.969	
	9	0.242469	48275	6.69784	13.1768	24.7816	-73.5972	-20.5559	232.951	
◄				\bigcup						
ខា	Done							🔮 Intern	et	

Millennium schema (schematic)

Merger trees

Millennium databases

- SQLServer2000 on 4 processor Opteron with 10Tb RAID
- milli-Millennium
 - Galaxies added: merger trees, links to their parent halos
 - Density field at various smoothings
 - Updated web site (<u>demo</u>)
- Millennium subset
 - Subset (~2%, 10x milli-Mil) of halo and galaxy trees
 - Z=0 density field
- Millennium
 - Halo trees in database (75000000, proprietary)
 - SAM galaxies in progress (10^9 galaxies)
 - Density fields at all Z will be added: 1056964608 rows
- Durham
 - milli_Millennium mirror (Postgres)
 - Durham halo tree and galaxy catalogues

Tools

- GAVO online query tool
 - Query results temporarily buffered on server: memory
- Streaming queries: faster, less limited (only timeout)
- IDL (with Ben Panter)
 - wget –http-user=*** --http-password=*** -O localfile.csv <u>http://www.g-vo.org/sdssdr3/DBQueryStream?SQL=select *</u> <u>from moped..agebin</u>
 - GUI asking for username/password
 - Interprets CSV stream, turned into IDL components
- <u>TOPCAT</u> with GAVO SQL plugin

Demo 1

 Return merger tree for halo identified at z=0

select prog.*

from halo des,

halo prog

where prog.haloId

between des.haloId and des.lastProgenitorId

and des.haloId = 5000063000000

Demo 2

 Return B-band luminosity function of galaxies residing in halos of mass between 10^13 and 10^14 solar masses

Demo 3

 Return the formation time of halos, defined as the maximum time at which it still has a progenitor of greater than half its mass, as function of the matter density in its environment, defined by the matter density smoothed on scale of 10Mpc

```
select zForm, avg(g10) as g10
from MMField f,
 ( select des.haloId, des.phkey,
          max(PROG.redshift) as zForm
     from MMHalo PROG,
          MMHalo DES
    where DES.redshift = 0
      and PROG.haloId between DES.haloId and DES.lastProgenitorId
      and prog.np >= des.np/2
      and des.np between 100 and 200
   group by des.haloId, des.phkey ) t
 where t.phkey = f.phkey
   and f.snapnum=63
group by zForm
```

3. Return the formation time of halos, defined as the maximum time at which it still has a progenitor of greater than half its mass, as function of the matter density in its environment, defined by the matter density smoothed on scale of 10Mpc

```
select zForm, avg(q10) as q10
from MMField f,
 ( select des.haloId, des.phkey,
          max(PROG.redshift) as zForm
     from MMHalo PROG,
          MMHalo DES
    where DES.redshift = 0
      and PROG.haloId between DES.haloId and DES.lastProgenitorId
      and prog.np >= des.np/2
      and des.np between 100 and 200
   group by des.haloId, des.phkey ) t
 where t.phkey = f.phkey
   and f.snapnum=63
group by zForm
```

Plans

- Comparison to standard, file based approach
- Load full Millennium in RDB
- Support "MyDB" for SAGF producers SAM-online, working on results of queries
- More products:
 - Mock SDSS
 - Light cones online
 - Spectra + query-by-example
- Use for science

Theory VO: spectra

- Combine theory and observations
- Example: query-by-example on theory spectra
- Find similar spectra, from these the actual galaxy formation history
- Chi-squared on all stored spectra ? Slow, requires storing all of them
- Idea (not original): use PCA to compress data

PCA

- Need training sample of theory spectra to create eigenspectra
- Project all spectra
- Store PCA amplitudes in DB
- Provide web service:
 - Upload (observational) spectrum (IVOA SSA/SED)
 - Project onto theory eigenspectra
 - Use amplitudes as parameters in query for "nearby" amplitudes
 - Return corresponding theory spectra
 - Return corresponding galaxy formation histories, or their halos, or their environment ...

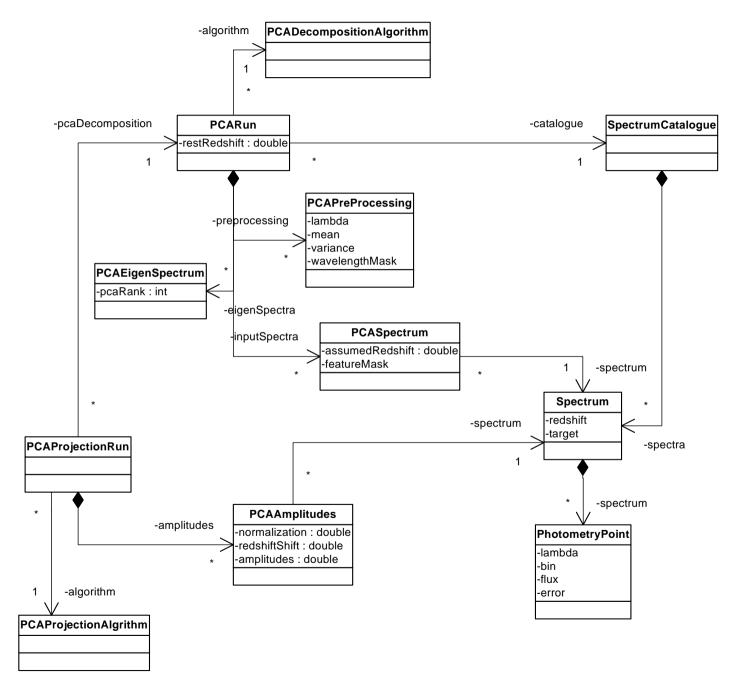
Issues

- Dealing with errors, gaps: "gappy PCA" (Connolly & Szalay)
- Normalization:
 - incoming spectrum in general from very different dataset, needs common normalization
 - Incoming set will have gaps, errors
 - Ad hoc normalization possible (and works quite good)
- Indexing of complex multi-dimensional point set for quick nearest k neigbours search (Voronoi ? See Laszlo's work)

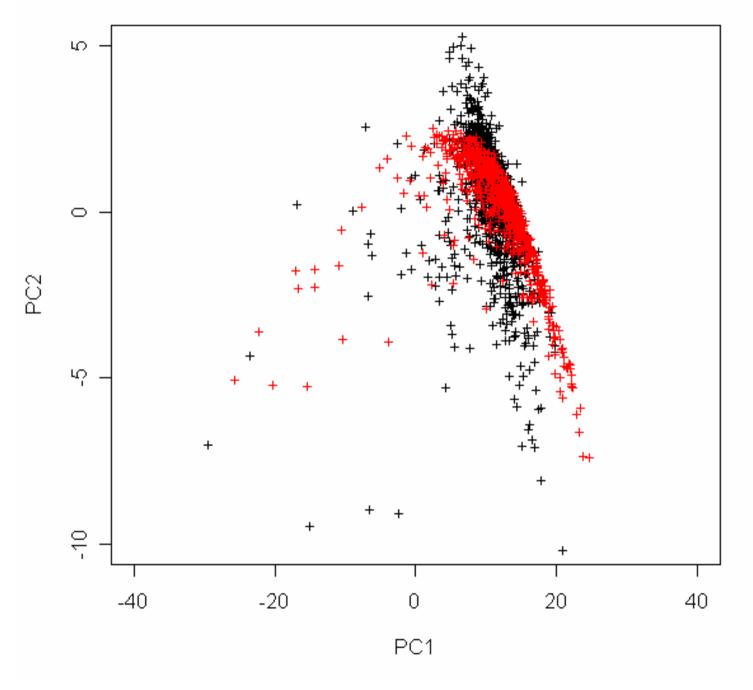
Normalized gappy PCA

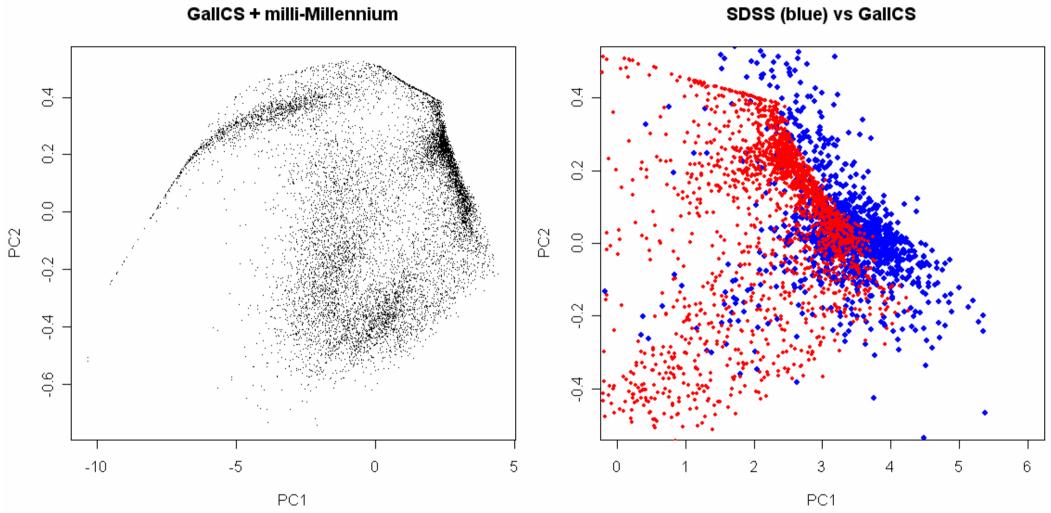
• Fit normalization factor at same time as PCA amplitudes. Model:

$$\boldsymbol{F}_{\lambda} = N(\boldsymbol{c}_{\lambda} + \sum_{i=1}^{n_{pc}} a_{i}\boldsymbol{e}_{i,\lambda})$$

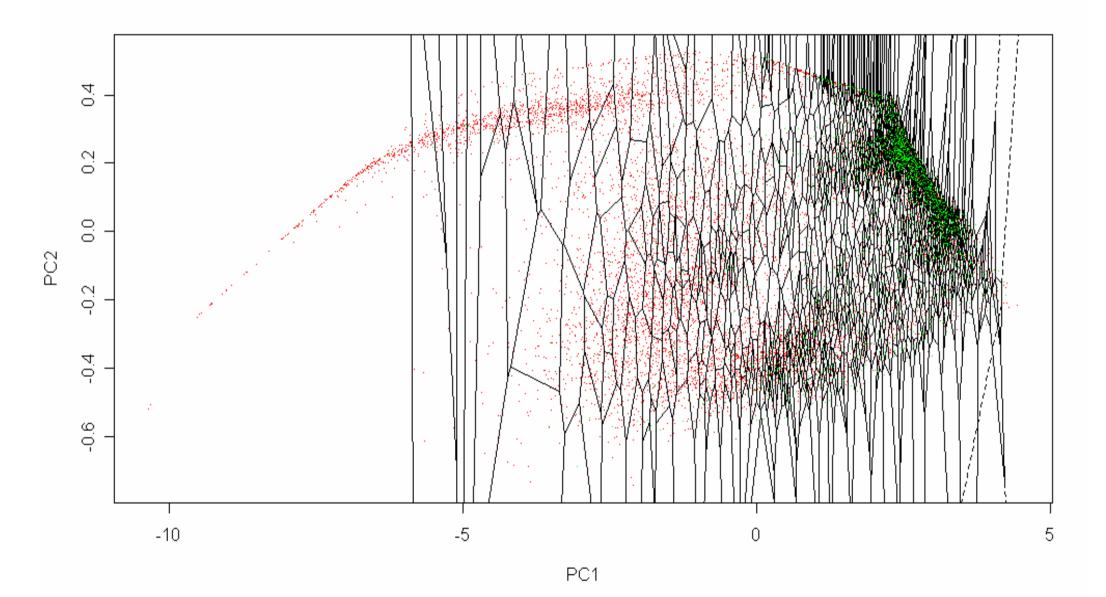

• Minimize (over a_i and N) :

$$\chi^2 = \sum_{\lambda} \boldsymbol{w}_{\lambda} (\boldsymbol{F}_{\lambda} - N(\boldsymbol{c}_{\lambda} + \sum_{i} a_{i} \boldsymbol{e}_{i,\lambda}))^2$$


So far


- Ran PCA on BC03 stochastic bursts (Vivienne Wild)
- On first GallCS+milli-Millennium spectra (Jeremy Blaizot)
- Projected SDSS spectra on both
- Defined a PCA data model/schema
- Stored PCAs in database
- TOPCAT access

PCA data model (RDB schema available)


SDSS (black) vs BC03 burst

GallCS + milli-Millennium

milliMil-GalICS PC1 vs PC2 Voronoi tesselation (HVO/JHU)

