Spectro-imagerie X: cartographie de la température du milieu intergalactique dans les amas de galaxies.

> Hervé Bourdin, Università di Roma Tor Vergata

Spectro-imagerie X: cartographie de la température du milieu intergalactique dans les amas de galaxies.

- Contexte scientifique:
 - Le milieu intergalactique (MIG-MIA)
- Spectro-imagerie X avec ondelettes:
 - Cartographie de la température du MIG
- Application:
 - Structuration de la température du MIG dans un échantillon d'amas sélectionné en brillance

Principaux collaborateurs..

- Pasquale Mazzotta
 - Università di Roma Tor Vergata, Rome
- Jean-Luc Sauvageot
 - Service d'astrophysique, CEA, Saclay
- Eric Slezak, Albert Bijaoui
 - Observatoire de la Côte d'Azur, Nice

Contexte scientifique: le milieu intergalactique (MIG, MIA..)

- Le milieu intergalactique (MIG, MIA..)
 - Plasma chaud, peu dense (n=10⁻³cm⁻³), émetteur X
 - Composante baryonique majoritaire dans les grandes structures (10-20% de la masse totale)
- La structuration de température du MIG révèle l'histoire de la formation des structures
 - dynamique de formation (collisions ==> chocs, mélange)
 - thermalisation du MIG (conduction de la chaleur, turbulence ==> anisotropies de température)

Le signal

- Rayonnement X du MIG
 - Rayonnement de freinage e⁻ (α n²) + raies d'émission

$$\epsilon \propto Z^2 n^2 \sqrt{T} \exp\left(\frac{-h \nu}{kT}\right)$$

 Forte décroissance d'émissivité à hte. énergie ==> il faut beaucoup de photons pour mesurer la pente des spectres!!

Le satellite XMM-Newton et les caméras EPIC.

- XMM-Newton:
 - Haute sensibilité, résolution angulaire (~6") et spectrale (60 eV @ 1keV)
 => Optimal pour la spectro-imagerie

• 3 télescopes / 3 caméras

- CCD à comptage de photons:
 => évènements (k,l,e,t);
- Réponse variable spatialement et spectralement (cf. miroirs, CCDs);
- Signal: source + fond cosmique X + fond de particules générées par le rayonnement cosmique.

Spectro-imagerie X avec ondelettes (H. Bourdin (Univ. Roma), E. Slezak, A. Bijaoui (OCA), J.-L. Sauvageot (Sap-CEA))

- Analyse multi-échelle
- Spectroscopie multi-paramètres (T,Z,Nh), dans chaque élément de résolution (max. vraisemblance): θ(k,l,j)±dθ(k,l,j);
- Filtrage passe-haut: $W_{\theta}(k,l,j) \pm dW_{\theta}(k,l,j);$
- Seuillage: $|W_{\theta}(k,l,j)| > dW_{\theta}(k,l,j);$
- Reconstruction linéarisée des structures significatives (contrainte de regularisation).

- Simulations d'observations EPIC-XMM (z=0.1, 60 ks):
 - Ondelette de Haar
 - Seuillage dur

Structuration de la température du MIG dans un échantillon d'amas sélectionnés en brillance

(H. Bourdin, P. Mazzotta (Univ. Roma "Tor Vergata")

Galaxy	Galactic hydrogen density	Redshift	X-ray brightness	Gas mean temperature
cluster	column (10 ²⁰ cm ⁻²)		(10 ⁴⁴ erg.s ⁻¹)	(keV)
A399	10.9	0.07	6.4	5.8
A401	10.5	0.07	9.94	7.8
A478	15.1	0.09	13.19	6.8
A1795	1.2	0.06	11.27	5.1
A2029	3.14	0.08	15.29	7.8
A2065	2.95	0.07	4.94	8.4
A2256	4.1	0.06	7.11	7.5
A2255	2.59	0.08	4.94	7.3

- Sélection en brillance:
 - Sondage ROSAT BCS (310 amas / hémisphere Nord);
 - Adaptation au champ de vue EPIC: $d\theta = [5,10'] = => dz = [.045, .096];$

L'échantillon: diversité morphologique..

- Données EPIC-MOS
- Morphologie X:
 - 5 amas irréguliers
 - 3 amas relaxés

.. et structuration thermique

- ondelette B2-spline
- seuillage de Donoho

Un système binaire: A401 – A399

-400

Arc minutes

R.A.(0) 02 57 49.88 Dec(0) +13 02 36.5

- Alignemnt morphologique
- Excès de T et n dans le filament (Sakeliou & Ponman, 04) => légère interaction
- Cartes T:
 - températures moyennes disctinctes
 - structuration irrégulière
 - excès confirmé dans le filament

8.1

7.4

6.7

6.1

Arc minutes

R.A.(0) 02 57 50.17 Dec(0) +13 02 50.6

A2065 – A2256: structuration thermique bimodale avec des indices d'accrétion

- ROSAT Chandra obs: (Markevitch 99, Sun 02)
 - Morphologie asymétrique
 - Structuration centrale complexe
 - Anisotropies de température

Obs. EPIC-XMM:

- Structuration thermique bimodale
- Discontinuités de contact Lx-Tx ==> fronts froids

R.A.(0) 17 04 04.32 Dec(0) +78 38 58.6

A478, A1795, A2029: 3 systèmes relaxés avec des anisotropies de température

Radius (arcmin)

Radius (arcmin)

 dT/T ≈ 10 % ==> Incertitudes sur les profils de T et masse dérivés à l'équilibre hydrostatique

Résumé et perspectives

- Mise en oeuvre d'un algorithme de spectro-imagerie X avec ondelettes (données EPIC-XMM);
- Performances en détection de structures testée sur simulations;
- Application à un échantillon d'amas sélectionné en brillance:
 - Amas en interaction: fortes irrégularités de T / structures spécifiques détectées (froids froids, ondes de chocs)
 - Amas relaxés: anisotropies de température (dT/T ~ 10%)
 - révèle l'état de thermalisation du MIG soumis à l'accrétion continue de sous-structures
 - influe sur la précision des mesures de masse
- Perspectives:
 - Mesures d'amplitude des structures de T
 (==> amplitude des coefficients en ondelettes)
 - Cartographie d'autres observables spectroscopiques: métallicité du MIG ==> enrichissement / interaction galaxies-MIG

A3921: structuration de température et métallicité du MIG

Simulation hydro: Ricker & Sarazin, 01 Système double (M2/M1=1/3) en interaction:

- Barre de compression // axe d'interaction ==> post-collision?
- Défaut de métaux dans la zone d'interaction ==> pré-collision? (Kapferer et col., 06)

- IRAS/IRIS map (100 μm): $<\!dIR\!>\!/IR \sim 100\%$ within a 1° field
- spatial correlation IR-Nh??
 - IR/Nh consistent with $\tau_{_{IR}}$ /Nh correlation (galactic dust at 17.5K, Boulanger (1996)),
 - but τ_{IR} /Nh correlation scatters in high Nh regime (cf. molecular gas?).

A478: a filamentary dust ^a galactic foreground

X-ray estimated Nh