design patterns for theoretical data access

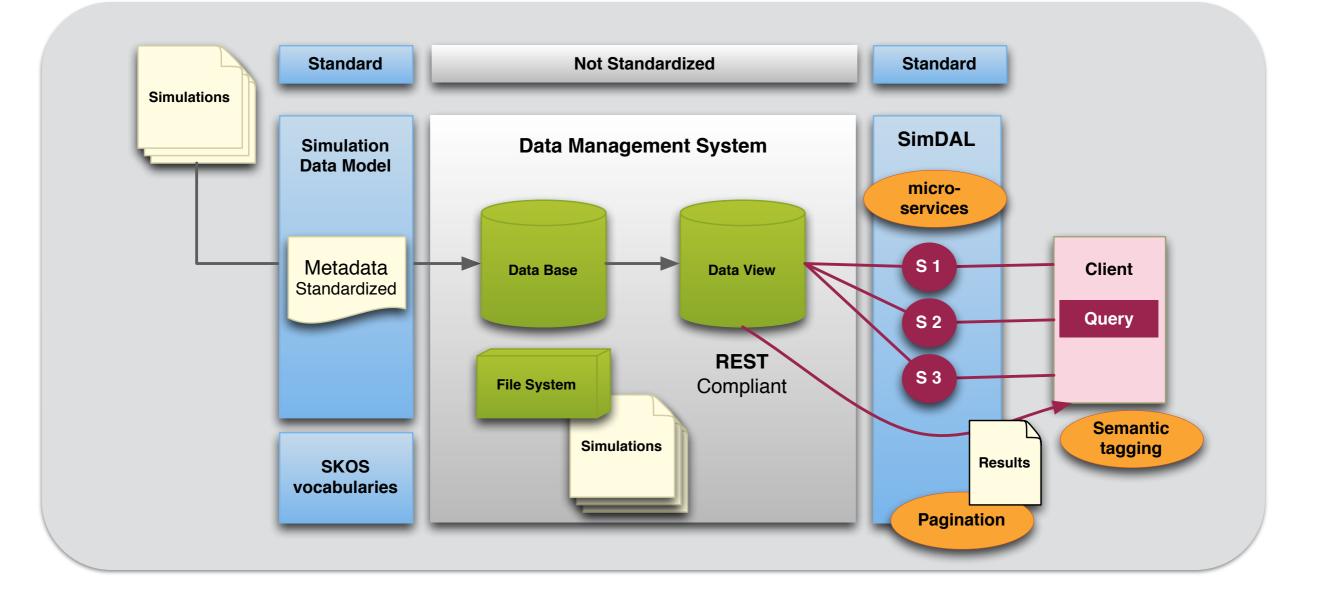
David Languignon

ASOV - Paris - 14/01/28

how it began

problem

• variety of code domains, quantities, units, ...


solution

• standard description format as an abstract data-model : SimDM

the end already ?

- practical implementations of the standard format
 - descriptions can be huge
 - deep hierarchy of nested atomic elements
 - Iong nested collections of large elements
- code raw output data handling issue remains

theoretical service architecture

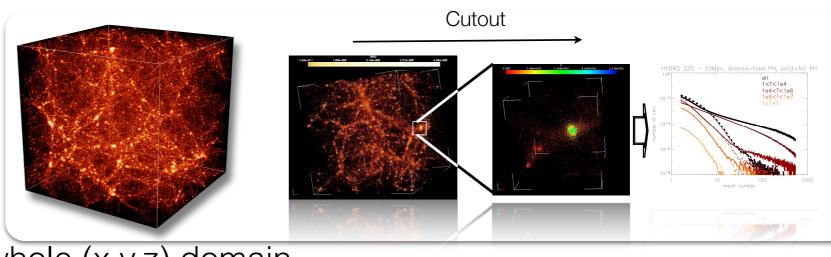
solution patterns encountered in our problem solving journey

- meta-model
- micro services architecture
- generalized space cutout
- pagination
- semantic tagging
- streams*

meta-model

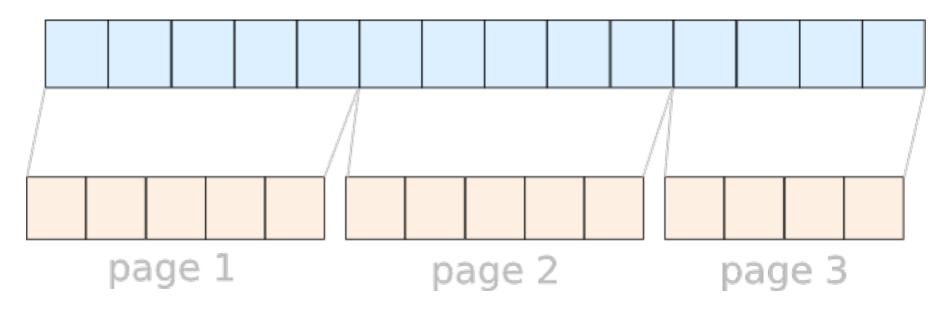
- Simulation Data-Model
 - Model whose instance is also a model
 - Abstract model to make concrete models
 - 1 concrete model per simulation code
 - ex of concrete model for observations : Simple Spectral DataModel

- micro service 1
 - get available semantic tags like "proton density" for project P
- micro service 2
 - get models from project P producing objects with
 "proton density" < T
- micro service 3
 - get the **datalink file** for a specific model


- composite service
 - get datalink file for models from project P having calculated property matching "proton density" string < T
 - orchestrate : ms1 -> ms2 -> ms3

- do 1 small thing well
 - simple api (simple restful service)
 - easy very easy to debug / maintain
 - composable / reusable
 - layered web service system

- TAP based services (ADQL)
 - tightly coupled to Relational Database Systems
 - bottleneck number of columns
 - bottleneck query complexity, EAV pattern
 - TAP compliant service is not trivial to setup
- API based services
 - loosely coupled with implementation details
 - specific technologies can be used for specific problems
 - more user/developer friendly


generalized space cutout

- common specific case
 - (x,y,z, property)
 - get cube inside the whole (x,y,z) domain
- general case (numerical simulation calculated objects)
 - (property1, property2, ...)
 - get hyper-cube inside the whole properties space
 - ex : cutout on (mass, velocity, temperature)
 - generalized cutout on any axis system through simple query language "ala" sql

pagination

split potentially infinite collections into pages

 manageable amount of memory & network latence. Allows interactive interface

pagination

- display a huge query result through a web interface
 - page 1 from result 0 to result 10
 - page 2 from 10 to 20 ...
- The user very rarely goes farther than the first pages. Avoid unnecessary backend work

virtual observatory

Web	Images	Maps	Shopping	More -	Search tools	
About 5	5,850,000 res	ults (0.11 s	econds)			
Cookies OK	s help us deliv		vices. By using	our services	, you agree to our use of cookies.	

The European Virtual Observatory EURO-VO | Euro-VO

www.euro-vo.org/ -

The Virtual Observatory is an international astronomical community-based initiative. It aims to allow global electronic access to the available astronomical data ...

Virtual observatory - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Virtual_observatory -

Virtual observatory (VO) is a collection of interoperating data archives and software tools which utilize the internet to form a scientific research environment in ...

<u>IVOA</u>

www.ivoa.net/ -

The Virtual Observatory (VO) is the vision that astronomical datasets and other resources should work as a seamless whole. Many projects and data centres ... Documents - IvoaEvents - Using the VO - VO Glossary

Searches related to virtual observatory

virtual observatory toolsastrophysical virtual observatoryvirtual observatory softwarevirtual observatory standardsscience virtual observatoryvirtual astronomical observatory

Q

pagination

```
Simplified SimDM description
{
    property1 : atom,
    property2: object,
   property3 : list
}
Simplified SimDM description instance example
{
    property1 : "atom1",
   property2 : {
        property21 : "atom21",
        property22 : "atom22"
    },
    property3:
        {property31: "atom31", property32 : "atom32"},
        {property31: "atom31", property32 : "atom32"}
        ...
}
```

semantic tagging

- user1 calls "halo mass" massh1
- user2 calls "halo mass" masst2
- How do we achieve consistency?
 - semantic tagging from standard vocabulary
- How do we deal with very large amount of metadata/ semantic tags ?
 - smart autocomplete VS infinite length select box

autocomplete

Request

Choose a vocabulary	Astronomical object \$			
Search a concept	h			
All concepts	HI Region			
m concepts	HI Region Warm			
A Stor	HII Galaxy			
A Star AGB Star	HII Region			
AGN	Halo			
AM Herculis	Herbig-Haro Object			
Absolute Magnitude	High-mass Star			
Accreting White Dwarf	High-mass X-ray Binary			
Accretion Disk Accretion-powered Puls	High-power Radio-loud AGN			
Algol Eclipsing Binary	<u>Sat</u>			
Alpha2 Canum Venatic	orum Variable			
Association of Stars				
Asteroid				

http://votheory.obspm.fr

(Nicolas Moreau)

Conclusion

- Hide implementation details : API/Rest VS ADQL
- splited, manageable collections
- small, manageable pieces of software
- standard exchange format : datamodel serialization
- generalized interface to extract cube of any space