
design patterns for
theoretical data access

David Languignon

ASOV - Paris - 14/01/28

how it began

problem

• variety of code domains, quantities, units, …

solution

• standard description format as an abstract
data-model : SimDM

the end already ?
• practical implementations of the standard format

• descriptions can be huge

✓ deep hierarchy of nested atomic elements

๏ long nested collections of large elements

• code raw output data handling issue remains

Simulations

Simulation
Data Model

SimDAL

ClientData Base

SKOS
vocabularies

Simulations

Data Management System

Data View

REST
Compliant

Metadata
Standardized

File System

S 1

S 2

S 3

Query

micro-
services

Pagination

Semantic
tagging

Results

Standard Not Standardized Standard

theoretical service architecture

solution patterns encountered
in our problem solving journey
• meta-model

• micro services architecture

• generalized space cutout

• pagination

• semantic tagging

• streams*

meta-model
• Simulation Data-Model

• Model whose instance is also a model

• Abstract model to make concrete models

• 1 concrete model per simulation code

• ex of concrete model for observations : Simple
Spectral DataModel

micro services
• micro service 1

• get available semantic tags like “proton density” for
project P

• micro service 2

• get models from project P producing objects with
“proton density” < T

• micro service 3

• get the datalink file for a specific model

micro services

• composite service

• get datalink file for models from project P having
calculated property matching “proton density”
string < T

• orchestrate : ms1 -> ms2 -> ms3

micro services
• do 1 small thing well

• simple api (simple restful service)

• easy very easy to debug / maintain

• composable / reusable

• layered web service system

micro services
• TAP based services (ADQL)

• tightly coupled to Relational Database Systems!

• bottleneck number of columns

• bottleneck query complexity, EAV pattern

• TAP compliant service is not trivial to setup

• API based services

• loosely coupled with implementation details!

• specific technologies can be used for specific problems

• more user/developer friendly

generalized space cutout
• common specific case

• (x,y,z, property)

• get cube inside the whole (x,y,z) domain

• general case (numerical simulation calculated objects)

• (property1, property2, …)

• get hyper-cube inside the whole properties space

• ex : cutout on (mass, velocity, temperature)

• generalized cutout on any axis system through simple query language
“ala” sql

Cutout

pagination
• split potentially infinite collections into pages!

!

!

!

• manageable amount of memory & network
latence. Allows interactive interface

pagination
• display a huge query result through a web

interface

• page 1 from result 0 to result 10

• page 2 from 10 to 20 …

• The user very rarely goes farther than the first
pages. Avoid unnecessary backend work

pagination

semantic tagging
• user1 calls “halo mass” massh1

• user2 calls “halo mass” masst2

• How do we achieve consistency ?

• semantic tagging from standard vocabulary

• How do we deal with very large amount of metadata/
semantic tags ?

• smart autocomplete VS infinite length select box

http://votheory.obspm.fr
(Nicolas Moreau)

autocomplete

http://votheory.obspm.fr

Conclusion
• Hide implementation details : API/Rest VS ADQL

• splited, manageable collections

• small, manageable pieces of software

• standard exchange format : datamodel serialization

• generalized interface to extract cube of any space

