

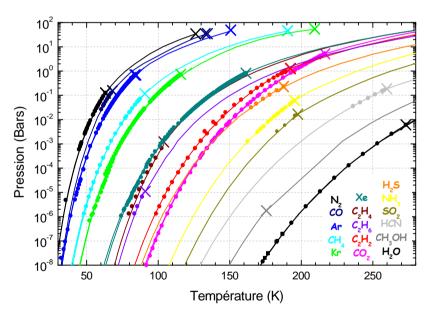
Base de données pour la spectroscopie des solides

Présentation du 26 Novembre 2007 par Bernard SCHMITT et Véronique GOUANERE Laboratoire Planétologie de Grenoble

- Projet global
- Base spectroscopique en transmission
- Fonctionnalités
- Etapes du projet
- Structure de la base de données
- Evolution en Observatoire Virtuel
- Choix techniques
- Conclusion

Bases de données spectroscopiques des matériaux solides d'intérêt planétologique

- Spectroscopie Visible-IR lointain en transmission
 (spectres, constantes optiques, fréquences et modes de vibration, ...)
 [Spectromètres à transformée de Fourier]
- Spectroscopie vis-IR de surfaces en réflexion bidirectionnelle (spectres bidirectionnels,fonctions de réflectance et paramètres de diffusion, ...) [Spectro-gonio radiomètre]
- Micro-spectrométries Raman et Fluorescence (excitatrices UV/vis) [Spectromètres Raman du LST (ENS-Lyon)]
- Spectro-imagerie infrarouge microscopique [Microscope infrarouge]


Matériaux planétaires solides

- Glaces, molécules volatile, hydrates, clathrates, ...
- Organiques: simples, matériaux macromoléculaires, polymères,
- Roches, minéraux, sels, matériaux hydratés, ...
- Autres composés (composés Soufrés, ...)
- Echantillons naturels et Extraterrestres (météorites, IDP's, ...)
- Composants optiques (fenêtres, filtres, réflecteurs, ...)
- Différents états physiques et texturaux :
 - □ Compacts (roche, glace, ..)
 - □ Poudre (minéraux, neige, ...) : surface
 - Films minces
 - □ Grain, Monocristaux, section polie, ...
 - □ Mélanges, ...
 - Température : 10 K 700 K

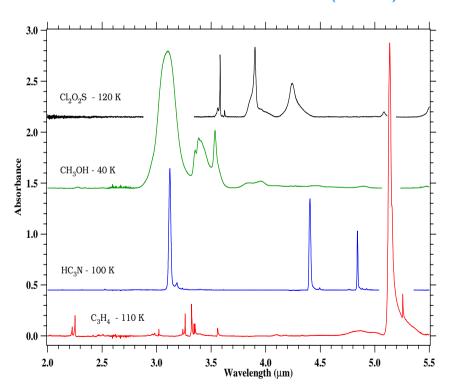
Base bibliographique sur les propriétés physiques des molécules condensées

- Base des propriétés physiques et thermodynamiques des solides moléculaires
 - analyse critique
 - synthèse bibliographique,
 - mesures en laboratoire,
 - calculs théoriques
- regrouperait les propriétés :
 - □ moléculaires,
 - □ cristallographiques,
 - optiques
 - □ thermodynamiques.
 - + données thermodynamiques expérimentales (LPG)

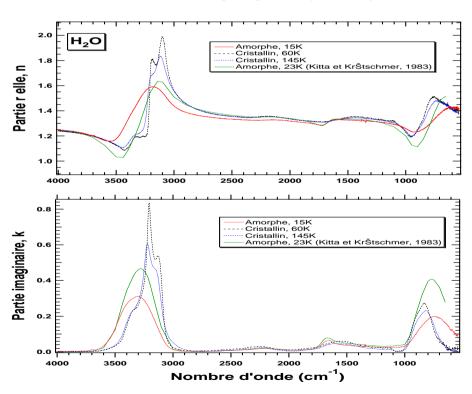
Compilation des Pressions de vapeur saturante des glaces

Propriétés Spectroscopiques Visible-Infrarouge

- Gamme spectrale: 0,3 200 µm
- Température : 10 K 300 K


Produits:

- □ Spectres en transmission (niveau 1)
- Spectres en absorbance normalisée (niveau 2)
- □ Coefficients d'absorption (niveau 3)
- □ Constantes optiques (niveau 4)
- Tables: positions, attributions, paramètres de bandes



Planétologie Produits: Spectres

- Absorbance normalisée (niv. 2)

Constantes optiques (niv. 4)

7/18

Produits: Tables de bandes (positions, attributions, paramètres,...)

 $TABLE\ I$ Frequencies and Absorption Coefficients for Selected CH₄-Ice I Absorption Maxima at 30 and 90 K

Transition	Reference ^a	30 K		90 K		
		ν̄ (cm ⁻¹)	$\alpha \text{ (cm}^{-1})$	ν̄ (cm ⁻¹)	$\alpha (\mathrm{cm}^{-1})$	
ν ₁ (CH ₃ D)	new band	2193 ± 1	4.48×10^{-1}	2194 ± 3	2.03×10^{-1}	
$2\nu_{4b}$ (CH ₃ D)	new band	2305 ± 1	1.27×10^{-1}	2308 ± 5	8.08×10^{-2}	
$2v_4$	C89	2598 ± 2	$2.48 \times 10^{+1}$	2607 ± 5	$1.05 \times 10^{+1}$	
$v_2 + v_4$	C89	2819 ± 2	$1.33 \times 10^{+2}$	2821 ± 5	$6.85 \times 10^{+1}$	
ν_3	E64	(ν_3 band at 3010 cm ⁻¹ is saturated in our data)				
$3v_4$	C89	3846 ± 1	$4.84 \times 10^{+1}$	3847 ± 2	$2.00 \times 10^{+1}$	
$3\nu_4$	reassigned	3897 ± 4	$3.39 \times 10^{+0}$	_	_	
$v_2 + 2v_4$	C92	4116 ± 1	$9.59 \times 10^{+0}$	4118 ± 2	$5.37 \times 10^{+0}$	
$v_1 + v_4$	K90	4203 ± 1	$5.15 \times 10^{+2}$	4204 ± 1	$1.88 \times 10^{+2}$	
$v_3 + v_4$	K90	4304 ± 1	$2.67 \times 10^{+2}$	4307 ± 2	$1.18 \times 10^{+2}$	
$\nu_2 + \nu_3$	K90	4530 ± 1	$4.13 \times 10^{+1}$	4526 ± 2	$2.24 \times 10^{+1}$	
$4v_4$	C92	5114 ± 1	1.90×10^{-1}	5113 ± 2	1.14×10^{-1}	
$4v_4$	C92	5162 ± 1	3.35×10^{-1}	5167 ± 2	1.56×10^{-1}	
$v_2 + 3v_4$	reassigned	5384 ± 1	$1.43 \times 10^{+0}$	5386 ± 3	6.12×10^{-1}	
$\nu_3 + 2\nu_4$	C92	5566 ± 2	$1.16 \times 10^{+1}$	5567 ± 3	$5.92 \times 10^{+0}$	
$2v_2 + 2v_4$	reassigned	5596 ± 2	$5.70 \times 10^{+0}$	5593 ± 3	$4.34 \times 10^{+0}$	
$\nu_2 + \nu_3 + \nu_4$	C92	5800 ± 1	$1.48 \times 10^{+1}$	5800 ± 2	$7.50 \times 10^{+0}$	
$\nu_1 + \nu_3$	C92	5919 ± 1	$2.54 \times 10^{+0}$	_	_	
$2\nu_3$	Q97a	5990 ± 1	$2.70 \times 10^{+1}$	5991 ± 2	$1.47\times10^{+1}$	
$2\nu_2 + \nu_3$	Q97a	6034 ± 2	$7.59 \times 10^{+0}$	_	_	
$v_2 + 4v_4$	new band	6616 ± 2	3.00×10^{-2}	_	_	
$v_1 + 3v_4$	C92	6735 ± 1	6.49×10^{-1}	6738 ± 2	2.62×10^{-1}	
$v_3 + 3v_4$	C92	6858 ± 3	2.59×10^{-1}	_	_	
$2v_2 + 3v_4$	reassigned	6882 ± 3	2.86×10^{-1}	_	_	
$\nu_1 + \nu_2 + 2\nu_4$	new band	6999 ± 2	3.12×10^{-1}	_	_	
$2\nu_1 + \nu_4$	Q97a	7066 ± 2	$2.83 \times 10^{+0}$	7066 ± 4	$1.91 \times 10^{+0}$	
$\nu_2 + \nu_3 + 2\nu_4$	reassigned	7084 ± 2	$2.88 \times 10^{+0}$	7085 ± 6	$1.85 \times 10^{+0}$	
$\nu_1 + \nu_3 + \nu_4$	C92	7130 ± 2	$3.71 \times 10^{+0}$	7127 ± 4	$2.15 \times 10^{+0}$	
$\nu_1 + 2\nu_2 + \nu_4$	C92	7195 ± 3	$1.15 \times 10^{+0}$	_	_	
$3v_2 + 2v_4$	reassigned	7233 ± 2	$1.83 \times 10^{+0}$	7230 ± 3	$1.54\times10^{+0}$	
$2\nu_3 + \nu_4$	C92	7279 ± 3	$2.28 \times 10^{+0}$	_	_	
$2\nu_2 + \nu_3 + \nu_4$	reassigned	7303 ± 3	$2.61 \times 10^{+0}$	_	_	
2 1 12 1 17						

Bandes de la glace de CH₄

$2v_2 + 3v_4$	reassigned	6882 ± 3	2.86×10^{-1}	_	_
$v_1 + v_2 + 2v_4$	new band	6999 ± 2	3.12×10^{-1}	_	_
$2v_1 + v_4$	Q97a	7066 ± 2	$2.83 \times 10^{+0}$	7066 ± 4	$1.91 \times 10^{+0}$
$\nu_2 + \nu_3 + 2\nu_4$	reassigned	7084 ± 2	$2.88 \times 10^{+0}$	7085 ± 6	$1.85 \times 10^{+0}$
$v_1 + v_3 + v_4$	C92	7130 ± 2	$3.71 \times 10^{+0}$	7127 ± 4	$2.15 \times 10^{+0}$
$v_1 + 2v_2 + v_4$	C92	7195 ± 3	$1.15 \times 10^{+0}$		_
$3v_2 + 2v_4$	reassigned	7233 ± 2	$1.83\times10^{+0}$	7230 ± 3	$1.54 \times 10^{+0}$
$2\nu_3 + \nu_4$	C92	7279 ± 3	$2.28 \times 10^{+0}$	_	_
$2\nu_2 + \nu_3 + \nu_4$	reassigned	7303 ± 3	$2.61 \times 10^{+0}$	_	_
$\nu_1 + \nu_2 + \nu_3$	Q97a	7351 ± 3	$2.77 \times 10^{+0}$	7340 ± 5	$1.83 \times 10^{+0}$
$v_2 + 2v_3$	C92	7488 ± 1	$5.23 \times 10^{+0}$	7487 ± 2	$2.71 \times 10^{+0}$
$v_1 + 4v_4$	new band	8045 ± 1	4.63×10^{-2}	8050 ± 2	2.25×10^{-2}
$v_3 + 4v_4$	new band	8087 ± 1	4.94×10^{-2}	8090 ± 2	3.22×10^{-2}
$v_1 + v_2 + 3v_4$	new band	8257 ± 2	8.85×10^{-2}		_
$v_2 + v_3 + 3v_4$	reassigned	8307 ± 1	3.60×10^{-1}	8311 ± 2	1.84×10^{-1}
$2v_1 + 2v_4$	C92	8389 ± 1	8.87×10^{-1}		_
$v_1 + v_3 + 2v_4$	reassigned	8409 ± 1	8.29×10^{-1}	8408 ± 2	5.33×10^{-1}
$2\nu_3 + \nu_4$	reassigned	8542 ± 5	$1.39 \times 10^{+0}$	_	_
$2\nu_1 + \nu_2 + \nu_4$	reassigned	8587 ± 1	$4.77 \times 10^{+0}$	8583 ± 2	$2.85 \times 10^{+0}$
$2\nu_1 + \nu_3$	C92	8758 ± 2	$1.09 \times 10^{+0}$	_	_
$v_2 + 2v_3 + v_4$	C92	8782 ± 1	$2.59 \times 10^{+0}$	8782 ± 2	$1.29 \times 10^{+0}$
$v_1 + 2v_3$	C92	8881 ± 1	9.55×10^{-1}	8875 ± 3	5.42×10^{-1}
$3\nu_3$	C92	9021 ± 2	1.09×10^{-1}	9016 ± 3	7.10×10^{-2}
$v_1 + v_3 + 3v_4$	C92	9734 ± 1	3.17×10^{-2}	9734 ± 3	3.01×10^{-2}
$2\nu_3 + 3\nu_4$	C92	9855 ± 2	2.06×10^{-1}	9855 ± 4	1.31×10^{-1}
$3v_1 + v_4$	C92	9980 ± 1	1.43×10^{-1}	9981 ± 2	1.11×10^{-1}
$2\nu_1 + \nu_3 + \nu_4$	C92	10014 ± 4	8.36×10^{-2}	_	_
$v_1 + 2v_3 + v_4$	C92	10081 ± 2	2.52×10^{-1}	10080 ± 4	1.55×10^{-1}
$3v_3 + v_4$	C92	10270 ± 2	1.14×10^{-1}	10263 ± 4	7.35×10^{-2}
$v_2 + 3v_3$	new band	10466 ± 4	3.06×10^{-3}	_	_
$3\nu_2 + 2\nu_3$	new band	10514 ± 3	4.98×10^{-3}	_	_
$2\nu_3 + 4\nu_4$	C92	11088 ± 1	1.82×10^{-1}	11092 ± 3	1.24×10^{-1}

8/18

Fonctionnalités scientifiques

R	عدا	hΔ	rch	ם י
1/1	()		1 (,1	

- recherche conditionnelle (mots clefs, paramètres) et accès à toutes données
- recherche conditionnelle des molécules de la base sur formule (ex: « CxHyOz »)
- □ recherche de bandes comprises dans une fourchette spectrale donnée pour les molécules type « CxHyOz » (à partir de tableaux de positions)

Opérations :

- convolution des spectres à différentes résolutions
- changements d'unités spectrales

Visualisation :

- □ visualisation interactive des spectres (zoom, ...) et des barres d'erreur
- □ comparaison de spectres, label des pics, ...

Outils

- □ simulation de spectres en transmission
- intégration du logiciel de simulation de spectres en réflexion (LPG)

Fonctionnalités techniques

- Système de livraison :
 - des fichiers produits, tables (complets, partiels), figures (choix d'unités...)
 - de références associées dans formats standards (bibtex, endnote, ascii)
 - □ d'un fichier annexe (conditions d'utilisation + référence de la Base)
 - ☐ fonctionnalité panier d'achat
- Suivi profil utilisateur :
 - enregistrement des utilisateurs de la base de données
 - □ suivi des mises à jour, alertes, nouveautés, ...
- Alimentation de la base
 - interface pour alimenter la base : fichiers, meta-données, tableaux, ...

Etapes du projet (1)

Etape 1 (Faite)

- Cahier des charges pour analyser le besoin.
- Elaboration d'un dictionnaire.
- Architecture logiciel : parcours des choix techniques (outils de modélisation, cadre de développement).

Etapes du projet (2)

Etape 2

- Elaboration des jeux de données : fichier texte répertoriant tous les cas de mesures et de données qui pourraient être produites.
- Modélisation de la base de données (en cours).

Etape 3

- Création de la base de données à partir de la modélisation.
- Ajout automatiques des données dans la base à partir des fichiers existants (bin,ascii).

Etapes du projet (3)

Etape 4

■ Elaboration architecture logicielle : modélisation UML.

Etape 5

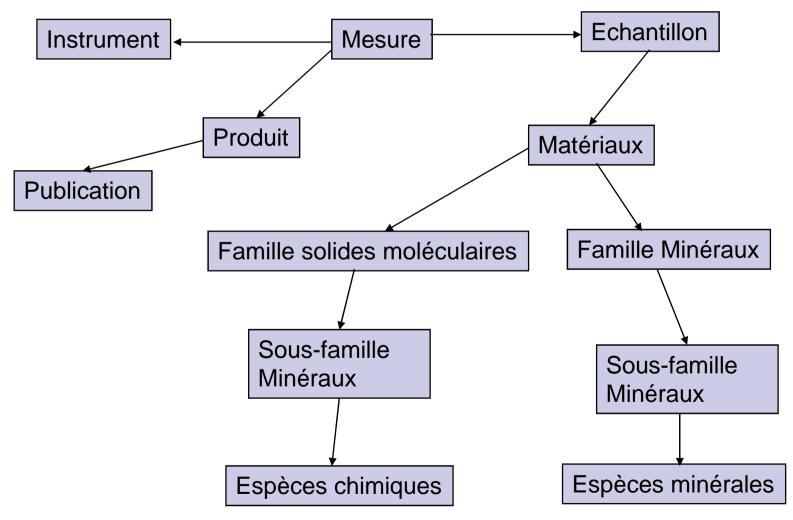
 Interface front-end : interface WEB pour utilisateur (formulaires, graphes, référence bibliographique).

Etape 6

- Interface back-end : interface WEB pour l'administration de la base de données.
- Authentification pour déterminer profil : administrateur ou utilisateur.

Etapes du projet (4)

Etape 7


- Conception des outils de visualisation (zoom sur graphe).
- Simulation de spectres en réflexion (logiciel existant) et transmission (à faire).

Etape 8

Conception des outils de livraison des nouvelles données : serveur FTP, alerte par email.

Planétologie Structure de la base de données

Evolution en Observatoire virtuel

- Elargissement des données convexes : dictionnaire commun, fichiers d'échanges XML, moteur de recherche de base.
- Conception interface OV : ajout de menus supplémentaires.

Choix techniques

- Open Source
- OS: Linux Fedora Core 7
- Base de données : MYSQL
- Modélisation base : DBDesigner Fork
- Modélisation projet : BOUML (UML)
- Framework de développement : Eclipse, J2EE/JAVA, Apache Tomcat

Conclusion

- Création de la base de données des mesures et produits de spectroscopie du LPG et interface WEB.
- Evolution en OV pour la planétologie : base et interface WEB extensibles.